3. BUILDING ADAPTABILITY

[ezcol_1third]NOTHING_350

But what should buildings adapt to?
Often times, it is one person, or one group of people that define their own vision for the city, suggesting that their solution is the answer to the problems plaguing urban daily life.

The daily living and working conditions of a city should not fall to one person or one small group of planners. The city and its people are constantly changing, perhaps now at a faster rate than ever before, in terms of population size and culture. The rate of change has a direct correlation with building adaptability. The faster one of Brand’s time components changes, the more profound the issue of building adaptability becomes. The latest urban utopia championed (mostly by corporations who seek to gain from it) is the ‚smart city.‘ It is impossible to research big data and the internet of things in the built environmnet without constantly coming across the plethora of ‚smart‘ objects. This is a concept that will be explored later in this document.
A population can outgrow its environment in the space of one generation. The people change and the city lags. End users should have the largest input into how their built environment’s services, aesthetics and culture are shaped.

Will a built environment shaped and informed by data supplied by the same individuals that provide that data prove to be a more adaptive environment, or will it pave the way for a sterile, too perfect, too efficient cookie cutter city.
A Big Data shaped city has the potential to be an adaptive, interconnected and self-organising network that can respond to its users needs, the challenges to achieve such an environment are enormous and it will likely be a slow and gradual process, but for argument’s sake lets entertain the fantasy that such an environment could one day exist.

[/ezcol_1third] [ezcol_1third]

With the collection and analysis of data patterns that otherwise could not be interpreted, perhaps patterns that can help inform a built environment will emerge. This collection and projection of data can help relieve a city of the short sightedness or even best intentions of urban planners or politicians.

If we think of the built environment as a network or an irregular grid of elements or nodes (people included) all supplying and being shaped by the data they in turn are generating, then we can imagine an environment in which the shortfalls of building adaptability might begin to be addressed, or at least identified.
A kinetic, data environment should not necessarily be something that is directly observable. The size of an adjustment should be, again, in direct correlation with Brand’s time diagram. Fashion concerned data will be the most fleeting and will cause fast changes, natural concered data the slowest.

The question that emerges from an environment where users define their own spaces is, “Where is the architect? ” Is there any need to engage an Architect for the services presented by New South Wales Architectural association above?

In early 2012, economic reporter, Catherine Rampell wrote an article for the New York Times titled ‘Want a Job? Go to College, and Don’t Major in Architecture’ As the title suggests, it’s a piece about the state of the Architecture profession at the time, stating statistics on the high graduate unemployment rate.
Shortly after, Scott Timburg, author of ‘“Culture Crash: The Killing of the Creative Class“ wrote of the scores of ‘starchitets’ who were being forced to lay off their staff.

[/ezcol_1third] [ezcol_1third_end]

Ex-architect Christine Outram, advisor for Neighbor.ly and Big Data startup, Instadat, adds her concerns for the profession in an open letter:
“I used to think it was impossible for you to respond to an audience in the way that tech startups do. These startups can build a product, release it over the Internet and adjust it based on the feedback they get. It’s an iterative process. Architecture, I thought, was too permanent for that. There was too much at stake, there was only one chance to get it right, there were too many variables. Blah blah blah…
…But the truth is, most of you don’t try. You rely on rules of thumb and pattern books, but you rarely do in-depth ethnographic research. You might sit at the building site for an hour and watch people “use space” but do you speak to them? Do you find out their motivations? Do your attempts really make their way into your design process?”

The above doom and gloom articles would suggest that I am not alone in the call for the profession to shift. Could the pending rise of Big Data serve as the profession’s much needed catalyst for change?
I am not so naïve as to claim that the problems of building adaptability and end user input are the only problems with the Architecture profession, nor am I suggesting that Big Data and the Internet of Things are the answers to all little Architects’ prayers. Adam Greenfield warns that “Perhaps we’ll find that a world with too much information presents as many problems as on with too little.“
But the fact that in the number of interconnected devices has outstripped the number of people on the planet suggests that it is coming, whether we are ready for it or not.

[/ezcol_1third_end]

PRESSURE - the force applied perpendicular to the surface of an object. Pressure sensors can be embedded into the physical environment in the likes of doors or floors or any element that experiences physical force. It can be used to gauge the position of people on floors to aid in way-finding or to monitor if someone were to fall to the floor in an accident.

PRESSURE

PRESSURE

BLUETOOTH -A wireless technology for exchanging data over short distances. Most Internet of Things devices will have a sensor like Bluetooth to provide the link between objects, people, elements and the data server (usually the cloud) . Bluetooth (or wifi/cellular) provides the link between objects and is what connects the built environment to the internet.

BLUETOOTH

BLUETOOTH

TIME - the indefinite continued progress  Time is a 'broad' sensor. All sensors will record time, as well as respond to time. Time sensors used to monitor   the sequence in which elements are used allows elements to anticipate their use, creating a highly responsive   built environment.

TIME

TIME – the indefinite continued progress Time is a ‘broad’ sensor. All sensors will record time, as well as respond to time. Time sensors used to monitor the sequence in which elements are used allows elements to anticipate their use, creating a highly responsive built environment.

MOTION - the act or process of changing position or place.  Motion sensors are used to detect and analyse either the type of movement a person makes within a space or   the movement of a person through a space. Motion can be relayed onto other objects and inform how these   objects operate, for example, a wall measuring the motion of someone when they awake triggering the lights to   switch on.

MOTION

MOTION – the act or process of changing position or place. Motion sensors are used to detect and analyse either the type of movement a person makes within a space or the movement of a person through a space. Motion can be relayed onto other objects and inform how these objects operate, for example, a wall measuring the motion of someone when they awake triggering the lights to switch on.

SOUND - vibrations that travel through the air or another medium and can be heard when they reach a person's   or animal's ear.  Sound sensors are used to measure noise levels across a range of frequencies. Sound sensors can be used to   activate security measures, for example, if elements register a sound such as glass breaking, an alarm could be   triggered. Sound sensors could also be sensitive enough to sense vibration alerting of foundation movement.

SOUND

SOUND – vibrations that travel through the air or another medium and can be heard when they reach a person’s or animal’s ear. Sound sensors are used to measure noise levels across a range of frequencies. Sound sensors can be used to activate security measures, for example, if elements register a sound such as glass breaking, an alarm could be triggered. Sound sensors could also be sensitive enough to sense vibration alerting of foundation movement.

RFID – (radio frequency identification) - the wireless use of electromagnetic fields to transfer data, for the purposes of automatically identifying and tracking tags attached to objects. RFID tags are used in a similar manner to barcodes, to record and track the usage and locations of possessions. Unlike a barcode, the tag contains electronically stored information, which can be transmitted to the reader from remote sites, offering greater flexibility of use.

RFID

RFID – (radio frequency identification) – the wireless use of electromagnetic fields to transfer data, for the purposes of automatically identifying and tracking tags attached to objects. RFID tags are used in a similar manner to barcodes, to record and track the usage and locations of possessions. Unlike a barcode, the tag contains electronically stored information, which can be transmitted to the reader from remote sites, offering greater flexibility of use.

SMOKE – a visible suspension of carbon or other particles in air, typically one emitted from a burning substance.  Smoke detectors analyse the air for smoke, typically as an indicator of fire. The sensors activate automatic   opening vents to extract the smoke from the building. When smoke is detected, an audible or visual alarm is   triggered and the emergency services are alerted.

SMOKE

SMOKE

PARTICLES – a minute portion of matter.  Particle detectors are used to detect, track and/or identify high energy particles, such as those produced by   nuclear decay or cosmic radiation. In unsafe conditions, sensors can alert people in the surrounding area to   evacuate and alert the emergency services immediately.

PARTICLES

PARTICLES – a minute portion of matter. Particle detectors are used to detect, track and/or identify high energy particles, such as those produced by nuclear decay or cosmic radiation. In unsafe conditions, sensors can alert people in the surrounding area to evacuate and alert the emergency services immediately.

TOUCH – the physiological sense by which external objects or forces are perceived through contact with the   body.  Touch sensors are used to operate elements within the built environment. Different types of touch motion i.e tap,   swipe, push trigger different actions. Touch recognition allows preferences to be recorded for multiple users.

TOUCH

TOUCH – the physiological sense by which external objects or forces are perceived through contact with the body. Touch sensors are used to operate elements within the built environment. Different types of touch motion i.e tap, swipe, push trigger different actions. Touch recognition allows preferences to be recorded for multiple users.

WIND – the perceptible natural movement of the air, especially in the form of a current of air blowing from a  particular direction. Wind meters are used to measure wind speed and direction over a certain area. If high levels   of wind are detected, protection measures are triggered to improve the comfort of an environment. During   extreme levels of wind, people may be instructed to evacuate or emergency services may be alerted.

WIND

WIND – the perceptible natural movement of the air, especially in the form of a current of air blowing from a particular direction. Wind meters are used to measure wind speed and direction over a certain area. If high levels of wind are detected, protection measures are triggered to improve the comfort of an environment. During extreme levels of wind, people may be instructed to evacuate or emergency services may be alerted.

TEMPERATURE – a measure of the average kinetic energy of atoms or molecules in a system.  Temperature sensors are used to monitor both the ambient temperature of a space and the temperature of   individuals within that space. The sensors can trigger temperature adjustments for the whole space or local to the   user, to improve user comfort levels.

TEMPERATURE

TEMPERATURE – a measure of the average kinetic energy of atoms or molecules in a system. Temperature sensors are used to monitor both the ambient temperature of a space and the temperature of individuals within that space. The sensors can trigger temperature adjustments for the whole space or local to the user, to improve user comfort levels.

HEART RATE – the number of heartbeats per unit of time, usually per minute.  Heart rate monitors are used to measure the heart rate of individuals, to help identify comfort levels and also   potential health risks. If an individual experiences heart problems, the emergency services can be alerted   immediately.

HEART RATE

HEART RATE – the number of heartbeats per unit of time, usually per minute. Heart rate monitors are used to measure the heart rate of individuals, to help identify comfort levels and also potential health risks. If an individual experiences heart problems, the emergency services can be alerted immediately.

SPEECH - the sound produced by the vocal organs of a vertebrate, especially a human.  Voice commands are used to instruct elements to perform a certain task or to initiate certain events. Voice   recognition allows preferences to be recorded for multiple users.

SPEECH

SPEECH – the sound produced by the vocal organs of a vertebrate, especially a human. Voice commands are used to instruct elements to perform a certain task or to initiate certain events. Voice recognition allows preferences to be recorded for multiple users.

FLAME – a hot glowing body of ignited gas that is  Flame sensors are used to detect and respond to the presence of a flame or fire. When a flame or fire is   detected, the sensor can trigger various responses, in the form of an alarm, a sprinkler system or deactivation of   a fuel line. A flame detector can often respond faster and more accurately than a smoke or heat detector,   enabling immediate evacuation of an affected area.

FLAME

FLAME – a hot glowing body of ignited gas that is Flame sensors are used to detect and respond to the presence of a flame or fire. When a flame or fire is detected, the sensor can trigger various responses, in the form of an alarm, a sprinkler system or deactivation of a fuel line. A flame detector can often respond faster and more accurately than a smoke or heat detector, enabling immediate evacuation of an affected area.

BRIGHTNESS – the   effect  Light sensors are used to monitor and adjust the brightness of a space. An optimum level of illuminance can be   achieved to improve user comfort or to enhance the experience of a space, for example, the lighting in a gallery   adjusted to consider the level of natural daylighting.

BRIGHTNESS

BRIGHTNESS – the effect Light sensors are used to monitor and adjust the brightness of a space. An optimum level of illuminance can be achieved to improve user comfort or to enhance the experience of a space, for example, the lighting in a gallery adjusted to consider the level of natural daylighting.

AIR QUALITY – the degree to which air in a particular place is pollution-free.  Air quality sensors sample the air regularly to analyse pollution content i.e dust, pollen, gas. The sensors trigger   the extraction of pollutants to improve air quality and user comfort. The sensors can alert the user or emergency   services in a case where the level of pollutant is dangerous.

AIR QUALITY

AIR QUALITY – the degree to which air in a particular place is pollution-free. Air quality sensors sample the air regularly to analyse pollution content i.e dust, pollen, gas. The sensors trigger the extraction of pollutants to improve air quality and user comfort. The sensors can alert the user or emergency services in a case where the level of pollutant is dangerous.

WATER – a clear, colourless, odourless, and tasteless liquid, H2O, essential for most plant and animal life.  Moisture sensors are used to monitor the moisture content of both natural and built elements. The sensors can   be used to trigger responses to improve user comfort or safety. In natural environments, high levels or water   detection can trigger a flood warning. In the built environment, early water detection can prevent water damage to   infrastructure.

WATER

WATER – a clear, colourless, Moisture sensors are used to monitor the moisture content of both natural and built elements. The sensors can be used to trigger responses to improve user comfort or safety. In natural environments, high levels or water detection can trigger a flood warning. In the built environment, early water detection can prevent water damage to infrastructure.

EEG – (electroencephalogram) a test that detects electrical activity in the brain using electrodes.  EEGs are used to map the brain activity of individual to gauge comfort, mood and responses to the environment.   Impulse responses to changes in the surrounding can be recorded and used to improve the environmental   conditions according to individual user preferences.

EEG

EEG – (electroencephalogram) a test that detects electrical activity in the brain using electrodes. EEGs are used to map the brain activity of individual to gauge comfort, mood and responses to the environment. Impulse responses to changes in the surrounding can be recorded and used to improve the environmental conditions according to individual user preferences.

PROXIMITY – nearness in space, time, or relationship.  Proximity sensors use infrared to detect the presence of nearby objects without any physical contact. Elements   are able to detect the distance between themselves, other elements and individuals. When certain proximity is   recorded between two elements or an element and an individual, the element is triggered to respond with an   action.

PROXIMITY

PROXIMITY – nearness in space, time, or relationship. Proximity sensors use infrared to detect the presence of nearby objects without any physical contact. Elements are able to detect the distance between themselves, other elements and individuals. When certain proximity is recorded between two elements or an element and an individual, the element is triggered to respond with an action.

LOCATION – a particular place or position where something is or where something is occurring.  Position sensors are used to record the location of people and objects. Sensors are able to track both individual’s   movements and place-specific events, enabling the surrounding environment to alter to suit the preferences of   each individual and of each event.

LOCATION

LOCATION – a particular place or position where something is or where something is occurring. Position sensors are used to record the location of people and objects. Sensors are able to track both individual’s movements and place-specific events, enabling the surrounding environment to alter to suit the preferences of each individual and of each event.

CAMERA – a device for recording visual images in the form of photographs, film, or video signals.  Cameras are incorporated into elements, enabling both still images and video recordings to be captured at all   times. These images and recordings can be relayed instantly to other elements which are responsible for   adjusting the environment, either to enhance user comfort or to improve security.

CAMERA

CAMERA – a device for recording visual images in the form of photographs, film, or video signals. Cameras are incorporated into elements, enabling both still images and video recordings to be captured at all times. These images and recordings can be relayed instantly to other elements which are responsible for adjusting the environment, either to enhance user comfort or to improve security.

BARCODE - a machine-readable code in the form of numbers widths, printed on a commodity and used especially for stock control. Barcodes are used to scan items as they pass from one threshold to another i.e. doors, corridors, windows. The use of possessions is recorded and their locations tracked. A low stock item is replenished or redistributed accordingly.

BARCODE

BARCODE – a machine-readable code in the form of numbers widths, printed on a commodity and used especially for stock control. Barcodes are used to scan items as they pass from one threshold to another i.e. doors, corridors, windows. The use of possessions is recorded and their locations tracked. A low stock item is replenished or redistributed accordingly.